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Abstract 
One of the most important parts of 3D computer vision systems is 
reconstruction of cameras. In this paper we describe our approach 
to the reconstruction of parameters of the three uncalibrated 
cameras using information from the three projections of the static 
scene. We match distinct features of the scene (such as corner 
points and straight line segments) and robustly sift out outlier 
matches using RANSAC techniques. Then the optimal trifocal 
tensor is built using an iterative algorithm which uses inlier 
matches. This trifocal tensor is used to reconstruct projective 
cameras. Finally these cameras may be transformed to metric if 
certain assumptions are presumed. The algorithm pipeline is fully 
automatic. 

Keywords: 3D Reconstruction, Camera reconstruction, Trifocal 
tensor. 

1. INTRODUCTION 

The problem of reconstruction of camera parameters from image 
sequences has been intensively studied during the last years. It 
was a considerable step forward from the previous calibrated 
approach when we had to calibrate our cameras explicitly (i.e. 
compute their intrinsic parameters from special kind of images, 
for example, chessboard-like black-and-white patterns). This 
approach is very limiting in real world 3D computer vision 
systems because it requires special non-automatic procedures and 
sometimes even particular hardware. 
Reconstruction of the cameras is the first part of Structure-from-
Motion algorithms. The second part is the reconstruction of 3D 
scene structure which is outside the scope of this paper. There are 
numerous approaches to this problem. There are a lot of papers on 
the topic, [17] (but deals with orthographic cameras) ,[2],[16], 
[11],[1] - to name a few. There is a good tutorial [10] too. In 
papers [4], [8], [9] and many others methods for camera 
reconstruction are addressed in particular. And the excellent 
textbook [7] incorporates the latest information and provides 
expert advice. 
The algorithm pipeline described in this paper is for static scenes. 
We designed our algorithm with video sequences taken by a 
consumer-level camcoder in mind. This implies that frame-to-
frame displacements are small and the quality of images is 
relatively poor. 

1.1 Notation 
Objects in the second image are marked with ′ and in the third – 
with ″. Tracked features are marked with  and reprojected – with 
˜. 

- 2D point in homogeneous coordinates 

- 3D point in homogeneous 

coordinates 
- 2D line in homogeneous coordinates 

 - 2D line segment with endpoints  and . 
 - epipole – projection of the i-th camera optical center 

 - identity matrix 

 - axiator matrix of x (multiplication by this matrix is 
equivalent to cross product) 

Point and line segments
matching

Detection of outliers and
guided matching

Trifocal tensor estimation

Reconstruction of
projective cameras

Reconstruction of
metric cameras

 
Figure 1. Overall pipeline. 

2. FEATURE TRACKING 

In this section algorithms for tracking corner points and straight 
line segments are briefly described. More information can be 
found in [14]. We use the term tracking because in practice we 
match features throughout the video sequence. We will also use 
the term frame instead of image. 

2.1 Point tracking 
Our feature point tracker is based on a cross-correlation approach 
to matching corner points in adjacent frames. We use this 
technique without multiscale strategy because we expect relatively 
small displacements between adjacent frames.  
Corner points are being detected using the slightly modified 
Harris corner detector [6]. Modification assures that the points are 
not initially close to each other.  
The tracking algorithm maintains desired number of points by 
detecting additional points through the sequence. 
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Possible mismatches are being detected with the help of 
geometrical constraints for two images (based on a fundamental 
matrix, see section 3) and three images (based on a trifocal tensor, 
see section 4) using robust RANSAC-based algorithms (see [5]). 
We use guided matching for outlier points (using the estimated 
fundamental matrix or the estimated trifocal tensor) as described 
in [2]. 

2.2 Line tracking 
The set of straight line segments is being detected in each frame 
during the tracking process. We apply the Canny edge detector [3] 
first to detect pixels that belong to edges. After that chains of 
connected pixels with a similar gradient direction are linked into 
segments. 
A pair of segments on adjacent frames is considered as a match if: 

• Average colors on one of the sides are similar 

• Directions of normals to corresponding lines are similar 

• Distance between corresponding segment ends is small 
These seed matches are verified on the basis of geometrical 
constraint for projections of 3D line on three images (this 
constraint is formulated in terms of a trifocal tensor) using a 
robust RANSAC-based algorithm. 
We can also use guided matching for segments without 
unambiguous correspondences on three frames using the 
estimated trifocal tensor (see lower). 

3. FUNDAMENTAL MATRIX ESTIMATION 

 
Figure 2.Epipolar constraint. 

There is a geometric constraint called epipolar for projections of 
3D point on two images. See [7] for detailed discussion. This 
constraint can be algebraically written in terms of fundamental 
matrix F:  

(1) 
This constraint is useful for the detection of outliers. Not every 
3x3 matrix can be fundamental. First it is defined up to scale, and 
the second constraint is . The algorithm that builds 
valid fundamental matrix must assure these constraints are 
satisfied. 

Since constraint has the form (1), a point in one image specifies 
the corresponding epipolar line (see Fig.2) that must pass through 
the projection in the second image. 
In the RANSAC scheme random sample of 7 points is being 
selected. The 7-point algorithm (see [14]) is used to reconstruct a 
putative matrix. Points that obey the constraint (distance from the 
corresponding epipolar line is less than a predefined threshold) 
are called inliers, others are called outliers. Many random probes 
are executed and point matches are finally classified using the 
matrix with the maximum number of inliers. 
Without the loss of generality we assume that the first projection 
matrix is  (since anyway they are defined up to 
projective transformation) and the second is . 
Note that the last column of the second matrix is an epipole – the 
projection of the second camera optical center on the first image. 
All epipolar lines pass through the epipole (see Fig.2). 
The optimal fundamental matrix is built using the Levenberg-
Marquardt iterative algorithm (see [12]). The function being 
minimized is a reprojection error 
and the parameters are coordinates of reconstructed 3D points and 
coefficients of matrix F. 3D points positions are reconstructed 

using a linear triangulation (see [7]). The algorithm is initialized 
with the matrix with the maximum number of inliers. 
The idea of guided matching is to restrict search for a match in the 
second image to the neighbourhood of the corresponding epipolar 
line. 

4. TRIFOCAL TENSOR ESTIMATION 

 
Figure 3. Line and point in three images. 

A trifocal tensor is an analog of a fundamental matrix for three 
projection images [7]. It is more useful than a fundamental matrix 
because it defines constraints for both points and straight lines. 
And we also use point and line segment matches on three images 
to build it. 
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If lines on three images are presented in homogenous coordinates 
then a trifocal tensor T is defined as a bilinear operator 

 (we use tensor notation and Einstein’s rule of 
summation). (For the derivation of this and the following 
formulae see [7] or [13]). 
Again without the loss of generality we assume that the first 
projection matrix is  (since anyway they are defined 
up to a projective transformation) and 

, then tensor components are 
expressed as 

(2) 

where  are i-th columns of A and B respectively. A 
constraint for lines is derived from the trifocal tensor definition: 
. 

Matrices  are called tensor 
slices. A constraint for points (see [7] or [13]) is written as: 
. 
The formula (2) shows that not every set of 27 numbers can be a 
valid trifocal tensor. In fact a tensor has 18 degrees of freedom 
(see [13]). So certain constraints or an appropriate 
parameterization should be chosen to assure validity of tensor. 
The most natural one is using elements of  and  (originally 
proposed by Hartley in [9]). Every choice of these 22 parameters 
provides a valid trifocal tensor through the formula (2) although 
this set of parameters is not minimal. 
The simplest algorithm minimizes an algebraic error from 
constraints. Constraints are linear in elements of a tensor. Every 
point match provides 4 independent homogeneous linear 
equations and every line match – 2 equations. As a tensor is 
composed of 27 elements and defined up to scale we need at least 
26 independent equations. So a minimum set for building a tensor 
is 7 points or 13 lines or some mixture of them. The system of 
equations  is solved using SVD:  (see 
[12]). The last column of  is the solution (corresponding to the 
minimum eigenvalue of ) 
Again we use a RANSAC procedure similar to the one described 
in the previous section to build a seed tensor for an iterative 
estimation algorithm and detect outliers (in this case both points 
and lines). Use of a RANSAC approach with lines is difficult 
because on typical images we have significantly less lines (10-25) 
than points and the building algorithm requires 13 lines.  
A criterion for a point to be an inlier is a small distance between 
the predicted (using trifocal tensor) and the detected (using 
tracking algorithm) positions in each of the three images.  
A criterion for a line to be an inlier is a small distance between the 
predicted (using trifocal tensor) line and the detected (using 
tracking algorithm) segment end points in each of the three 
images. 
Finally the best tensor is built using the Levenberg-Marquardt 
algorithm. The function being minimized is the sum of 
reprojection error 

 
 for points and a reprojection error for line segments 

 
 with appropriate weight coefficients and the varying parameters 
are reconstructed 3D points & lines coordinates and coefficients 
of  and . 3D points positions are reconstructed using a linear 
triangulation (see [7]). 3D lines positions are reconstructed using 
an algebraic error minimization algorithm described in [7] too. 
A tensor may be obtained from projection matrices by the formula 
(2). The Method for obtaining projection matrices  and  from 
the tensor coefficients is described in the next section. It is needed 
to initialize an iterative algorithm and to reconstruct 3D points 
and lines for a reprojection. 

5. RECONSTRUCTION OF PROJECTIVE 
CAMERAS 

Projection matrices are retrieved from a trifocal tensor using 
method described in [8]. As usual  (since anyway 
they are defined up to a projective transformation) and 

.  

First we compute epipoles  and  using the method presented 
in [15]. It is principally equivalent to the standard method (see 
[7]) but more robust because all tensor slices  need not 
to be of rank 2. 
Other coefficients (of  and ) satisfy the equation (2). But these 
equations have not a unique solution. There is a 4-parameter 
family of solutions. Hartley proposes the following solution: 

 
An ambiguity here is solved by demanding that the columns of  
are perpendicular to  hence the second projection center lies in 
the plane at infinity. We also normalize  (in 
homogeneous coordinates). 

6. RECONSTRUCTION OF METRIC CAMERAS 

It is common knowledge that projective reconstruction from point 
projections is defined only up to an arbitrary projective 
transformation. Indeed, given arbitrary projective transformation 

 in , one may replace initial points and cameras and with new 
points and cameras using the following rules:  and 

. This transformation preserves point projections. 
However, not all these reconstructions are equivalent from metric 
point of view. Consider arbitrary camera matrix . 
Using QR decomposition,  can be factored into , where  
is upper triangular and  is orthogonal. In metric case,  stands 
for camera orientation, whereas  defines camera intrinsic 
parameters. If something is known a priori about matrix , then 
metric upgrade of projective reconstruction is possible, since 
metric reconstructions can be distinguished as having specific -
matrices for each camera. In our current implementation we 
assume that . This corresponds to the 
case of a camera with square pixels, centered principal point and 
zero skew. Metric upgrade is performed as follows. 
For our initial reconstruction we seek for the transformation , 
that brings our cameras to metric state, having lower-tringular 
matrix (to reduce ambiguity). Assuming that  has been found, 
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we write:  =  =  =  = 
, where _ means taking left 3x3 matrix 

and  is  with zero right column. This gives us four linear 
homogeneous equations on the entries of matrix  per 
camera. Since  is symmetric it is represented with 10 
variables and three cameras gives us 12 equations on 10 variables, 
allowing for obtaining entries of  via SVD-decomposition. 
One can also enforce  to have rank 3, using SVD. Matrix  
then can be extracted from  via Cholesky decomposition. 
Since Cholesky decomposition is defined only for 
(semi)positively defined matrices, metric upgrade can fail if 

, obtained with our method, is not semi-positively defined 
due to tracking errors and noise. 
Matrix  can be found from  by using any constant as  (this 
constant stands for the overall scale of reconstruction). 

7. CONCLUSION 

The method presented in this paper was implemented in program 
library. It is fully automatic non-realtime method and was tested 
on still image sets and video sequences both synthesized and 
captured by an ordinary camcorder. 
We are working on an algorithm for camera and structure 
recovery for long sequences. We also plan to improve robustness 
in some degenerate cases. Some experiments with constrained 
tensor estimation (Gauss-Helmert model) are also planned. 
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